Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 4(3): e282, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250146

RESUMO

In the central nervous system diseases, glioma is one of the most common malignancies around the world. Despite the recent improvements in therapies for glioma, the prognosis of some high-risk glioma remains poor. In glioma, isoliquiritigenin (ISL) is reported to have antioxidative and antitumor activities. However, the potential mechanisms between ISL and circle RNAs (circRNAs) in the glioma tumorigenesis process have not yet been reported. Here, we treated glioma cells with ISL, and circRNA expression levels were detected. Circ0030018 was found significantly downregulated by ISL. Therefore, we explored circ0030018 expression profiles and functions in glioma, finding that circ0030018 was evidently overexpressed in glioma cell lines. Colony formation, CCK-8, and transwell assay made clear that circ0030018 silencing dramatically cut down glioma growth and invasion. Moreover, ROS level was detected to find that circ0030018 silence remarkably enhanced cell oxidative stress in glioma. Mechanism studies were conducted to investigate the underlying basis of circ0030018 function in glioma, unveiling that circ0030018 realized its functions partially through the miR-1236/HER2 signaling in glioma. In conclusion, our study investigated the roles and mechanisms of the ISL on the circ0030018/miR-1236/HER2 pathway in glioma tumorigenesis and progression. Circ0030018 could act as the prospective biologic signature or therapeutic target for glioma.

2.
Angew Chem Int Ed Engl ; 62(14): e202218021, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36732289

RESUMO

Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Metais/química , Quinonas/farmacologia
3.
Brain Behav ; 12(12): e2791, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36282481

RESUMO

OBJECTIVE: To study the clinical features and power spectral entropy (PSE) of electroencephalography signals in Wilson's disease (WD) patients with dystonia. METHODS: Several scale evaluations were performed to assess the clinical features of WD patients. Demographic information and electroencephalography signals were obtained in all subjects. RESULTS: 34 WD patients with dystonia were recruited in the case group and 24 patients without dystonia were recruited in the control group. 20 healthy individuals were included in the healthy control group. The mean body mass index (BMI) in the case group was significantly lower than that in the controls (p < .05). The case group had significantly higher SAS, SDS, and Bucco-Facial-Apraxia Assessment scores (p < .05). Total BADS scores in the case group were lower than those in the control group (p < .01). Note that 94.11% of the case group presented with dysarthria and 70.59% of them suffered from dysphagia. Dysphagia was mainly related to the oral preparatory stage and oral stage. Mean power spectral entropy (PSE) values in the case group were significantly different (p < .05) from those in the control group and the healthy group across the different tasks. CONCLUSIONS: The patients with dystonia were usually accompanied with low BMI, anxiety, depression, apraxia, executive dysfunction, dysarthria and dysphagia. The cortical activities of the WD patients with dystonia seemed to be more chaotic during the eyes-closed and reading tasks but lower during the swallowing stages than those in the control group.


Assuntos
Distonia , Degeneração Hepatolenticular , Humanos , Apraxias/diagnóstico , Transtornos de Deglutição/diagnóstico , Disartria/diagnóstico , Distonia/complicações , Distonia/fisiopatologia , Eletroencefalografia , Entropia , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/fisiopatologia , Estudos de Casos e Controles
4.
J Mater Chem B ; 10(37): 7607-7621, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713277

RESUMO

The biomolecular corona that forms on particles upon contact with blood plays a key role in the fate and utility of nanomedicines. Recent studies have shown that precoating nanoparticles with serum proteins can improve the biocompatibility and stealth properties of nanoparticles. However, it is not fully clear how precoating influences biomolecular corona formation and downstream biological responses. Herein, we systematically examine three precoating strategies by coating bovine serum albumin (single protein), fetal bovine serum (FBS, mixed proteins without immunoglobulins), or bovine serum (mixed proteins) on three nanoparticle systems, namely supramolecular template nanoparticles, metal-phenolic network (MPN)-coated template (core-shell) nanoparticles, and MPN nanocapsules (obtained after template removal). The effect of protein precoating on biomolecular corona compositions and particle-immune cell interactions in human blood was characterized. In the absence of a pre-coating, the MPN nanocapsules displayed lower leukocyte association, which correlated to the lower amount (by 2-3 fold) of adsorbed proteins and substantially fewer immunoglobulins (more than 100 times) in the biomolecular corona relative to the template and core-shell nanoparticles. Among the three coating strategies, FBS precoating demonstrated the most significant reduction in leukocyte association (up to 97% of all three nanoparticles). A correlation analysis highlights that immunoglobulins and apolipoproteins may regulate leukocyte recognition. This study demonstrates the impact of different precoating strategies on nanoparticle-immune cell association and the role of immunoglobulins in bio-nano interactions.


Assuntos
Nanocápsulas , Coroa de Proteína , Apolipoproteínas , Comunicação Celular , Humanos , Imunoglobulinas , Soroalbumina Bovina
5.
Chem Rev ; 122(13): 11432-11473, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35537069

RESUMO

Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.


Assuntos
Complexos de Coordenação , Metais , Álcalis , Complexos de Coordenação/química , Íons , Ciência dos Materiais , Metais/química , Fenóis
6.
Langmuir ; 37(38): 11292-11300, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34516132

RESUMO

Nanoengineered capsules encapsulated with functional cargos (e.g., enzymes) are of interest for various applications including catalysis, bioreactions, sensing, and drug delivery. Herein, we report a facile strategy to engineer enzyme-encapsulated metal-phenolic network (MPN) capsules using enzyme-loaded zeolitic imidazolate framework nanoparticles (ZIF-8 NPs) as templates, which can be removed in a mild condition (e.g., ethylenediaminetetraacetic acid (EDTA) solution). The capsule size (from 250 nm to 1 µm) and thickness (from 9.8 to 33.7 nm) are well controlled via varying the template size and coating time, respectively. Importantly, MPN capsules encapsulated with enzymes (i.e., glucose oxidase) can trigger the intracellular cascade reaction via the exhaustion of glucose to produce H2O2 and subsequently generate toxic hydroxyl radicals (•OH) based on the Fenton reaction via the reaction between H2O2 and iron ions in MPN coatings. The intracellular cascade reaction for the generation of •OH is efficient to inhibit cancer cell viability, which is promising for the application in chemodynamic therapy.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Cápsulas , Catálise , Metais
7.
Colloids Surf B Biointerfaces ; 205: 111851, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34020152

RESUMO

The surface modification of biomaterials is crucial for constructing bioactive interfaces capable of interacting with specific biomolecules, controlling cell behavior and regulating biological processes. Because of their excellent biocompatibility, facile preparation, pH-responsiveness and universal adhesion, surface coatings made from metal-phenolic network (MPN) have attracted extensive attention for handling interfacial properties and designing biomaterials in recent years. Different methods and technologies for assembling MPN coatings are summarized and compared in this paper, followed by highlighting the advantages of MPN coatings as bioactive interfaces for controlling biological process at the molecular, cellular, and tissue levels. Current challenges and prospects of MPN coatings for biomedical applications are also discussed.


Assuntos
Materiais Biocompatíveis , Fenóis , Metais , Propriedades de Superfície
8.
Angew Chem Int Ed Engl ; 60(26): 14586-14594, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834585

RESUMO

Supramolecular complexation is a powerful strategy for engineering materials in bulk and at interfaces. Metal-phenolic networks (MPNs), which are assembled through supramolecular complexes, have emerged as suitable candidates for surface and particle engineering owing to their diverse properties. Herein, we examine the supramolecular dynamics of MPNs during thermal transformation processes. Changes in the local supramolecular network including enlarged pores, ordered aromatic packing, and metal relocation arise from thermal treatment in air or an inert atmosphere, enabling the engineering of metal-oxide networks (MONs) and metal-carbon networks, respectively. Furthermore, by integrating photo-responsive motifs (i.e., TiO2 ) and silanization, the MONs are endowed with reversible superhydrophobic (>150°) and superhydrophilic (≈0°) properties. By highlighting the thermodynamics of MPNs and their transformation into diverse materials, this work offers a versatile pathway for advanced materials engineering.

9.
Angew Chem Int Ed Engl ; 60(5): 2346-2354, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058424

RESUMO

Engineering coatings with precise physicochemical properties allows for control over the interface of a material and its interactions with the surrounding environment. However, assembling coatings with well-defined properties on different material classes remains a challenge. Herein, we report a co-assembly strategy to precisely control the structure and properties (e.g., thickness, adhesion, wettability, and zeta potential) of coatings on various materials (27 substrates examined) using quinone and polyamine building blocks. By increasing the length of the amine building blocks from small molecule diamines to branched amine polymers, we tune the properties of the films, including the thickness (from ca. 5 to ca. 50 nm), interfacial adhesion (0.05 to 5.54 nN), water contact angle (130 to 40°), and zeta potential (-42 to 28 mV). The films can be post-functionalized through the in situ formation of diverse nanostructures, including nanoparticles, nanorods, and nanocrystals. Our approach provides a platform for the rational design of engineered, substrate-independent coatings for various applications.

10.
ACS Appl Mater Interfaces ; 12(47): 52457-52466, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180456

RESUMO

Polyphenolic molecules have become attractive building blocks for bioinspired materials due to their adhesive characteristics, capacity to complex ions, redox chemistry, and biocompatibility. For the formation of tannic acid (TA) surface modifications based on silicate-phenolic networks, a high ionic strength is required. In this study, we investigated the effects of NaCl, KCl, and LiCl on the formation of TA coatings and compared it to the coating formation of pyrogallol (PG) using a quartz-crystal microbalance. We found that the substitution of NaCl with KCl inhibited the TA coating formation through the high affinity of K+ to phenolic groups resulting in complexation of TA. Assessment of the radical formation of TA by electron paramagnetic resonance spectroscopy showed that LiCl resulted in hydrolysis of TA forming gallic acid radicals. Further, we found evidence for interactions of LiCl with the Siaq crosslinker. In contrast, the coating formation of PG was only little affected by the substitution of NaCl with LiCl or KCl. Our results demonstrate the interaction potential between alkali metal salts and phenolic compounds and highlight their importance in the continuous deposition of silicate-phenolic networks. These findings can be taken as guidance for future biomedical applications of silicate-phenolic networks involving monovalent ions.

11.
Angew Chem Int Ed Engl ; 59(4): 1711-1717, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31763728

RESUMO

Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho-diphenol)-containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme-mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross-linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface-confined reactions (e.g., biomineralization, metal ion chelation, and N-hydroxysuccinimide conjugation).


Assuntos
Enzimas/química , Metais/química , Fenóis/química , Catálise
12.
Angew Chem Int Ed Engl ; 59(1): 275-280, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31646700

RESUMO

The manipulation of interfacial properties has broad implications for the development of high-performance coatings. Metal-phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host-guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin-based MPNs are highly permeable (even to high molecular weight polymers: 250-500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).

13.
Adv Sci (Weinh) ; 6(21): 1901846, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728297

RESUMO

Droplet bouncing on repellent solid surfaces (e.g., the lotus leaf effect) is a common phenomenon that has aroused interest in various fields. However, the scenario of a droplet bouncing off another droplet (either identical or distinct chemical composition) while moving on a solid material (i.e., ricocheting droplets, droplet billiards) is scarcely investigated, despite it having fundamental implications in applications including self-cleaning, fluid transport, and heat and mass transfer. Here, the dynamics of bouncing collisions between liquid droplets are investigated using a friction-free platform that ensures ultrahigh locomotion for a wide range of probing liquids. A general prediction on bouncing droplet-droplet contact time is elucidated and bouncing droplet-droplet collision is demonstrated to be an extreme case of droplet bouncing on surfaces. Moreover, the maximum deformation and contact time are highly dependent on the position where the collision occurs (i.e., head-on or off-center collisions), which can now be predicted using parameters (i.e., effective velocity, effective diameter) through the concept of an effective interaction region. The results have potential applications in fields ranging from microfluidics to repellent coatings.

14.
Biomacromolecules ; 20(9): 3425-3434, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31411865

RESUMO

Supraparticles (SPs) assembled from smaller colloidal nanoparticles can serve as depots of therapeutic compounds and are of interest for long-term, sustained drug release in biomedical applications. However, a key challenge to achieving temporal control of drug release from SPs is the occurrence of an initial rapid release of the loaded drug (i.e., "burst" release) that limits sustained release and potentially causes burst release-associated drug toxicity. Herein, a biocoating strategy is presented for silica-SPs (Si-SPs) to reduce the extent of burst release of the loaded model protein lysozyme. Specifically, Si-SPs were coated with a fibrin film, formed by enzymatic conversion of fibrinogen into fibrin. The fibrin-coated Si-SPs, FSi-SPs, which could be loaded with 7.9 ± 0.9 µg of lysozyme per SP, released >60% of cargo protein over a considerably longer period of time of >20 days when compared with the uncoated Si-SPs that released the same amount of the cargo protein, however, within the first 3 days. Neurotrophins that support the survival and differentiation of neurons could also be loaded at ∼7.3 µg per SP, with fibrin coating also delaying neurotrophin release (only 10% of cargo released over 21 days compared with 60% from Si-SPs). In addition, the effects of incorporating a hydrogel-based system for surgical delivery and the opportunity to control drug release kinetics were investigated-an alginate-based hydrogel scaffold was used to encapsulate FSi-SPs. The introduction of the hydrogel further extended the initial release of the encapsulated lysozyme to ∼40 days (for the same amount of cargo released). The results demonstrate the increasing versatility of the SP drug delivery platform, combining large loading capacity with sustained drug release, that is tailorable using different modes of controlled delivery approaches.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanopartículas/química , Coloides/química , Coloides/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Fibrina/química , Fibrinogênio/química , Humanos , Hidrogéis/farmacologia , Muramidase/química , Dióxido de Silício/química
15.
Angew Chem Int Ed Engl ; 58(36): 12563-12568, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31318144

RESUMO

The tunable growth of metal-organic materials has implications for engineering particles and surfaces for diverse applications. Specifically, controlling the self-assembly of metal-phenolic networks (MPNs), an emerging class of metal-organic materials, is challenging, as previous studies suggest that growth often terminates through kinetic trapping. Herein, kinetic strategies were used to temporally and spatially control MPN growth by promoting self-correction of the coordinating building blocks through oxidation-mediated MPN assembly. The formation and growth mechanisms were investigated and used to engineer films with microporous structures and continuous gradients. Moreover, reactive oxygen species generated by ultrasonication expedite oxidation and result in faster (ca. 30 times) film growth than that achieved by other MPN assembly methods. This study expands our understanding of metal-phenolic chemistry towards engineering metal-phenolic materials for various applications.

16.
ACS Appl Mater Interfaces ; 11(19): 17714-17721, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038907

RESUMO

Selective self-assembly in multicomponent mixtures offers a method for isolating desired components from complex systems for the rapid production of functional materials. Developing approaches capable of selective assembly of "target" components into intended three-dimensional structures is challenging because of the intrinsically high complexity of multicomponent systems. Herein, we report the selective coordination-driven self-assembly of metal-phenolic networks (MPNs) from a series of complex multicomponent systems (including crude plant extracts) into thin films via metal chelation with phenolic ligands. The metal (FeIII) selectively assembles low abundant phenolic components (e.g., myricetrin and quercetrin) from plant extracts into thin films. This selective metal-phenolic assembly is independent of the substrate properties (e.g., size, surface charge, and shape). Moreover, the high selectivity is consistent across different target phenolic ligands in model mixtures, even though each individual component can form thin films from single-component systems. A computational simulation of film formation suggests that the driving force for the selective behavior stems from differences in the number of chelating sites in the phenolic structures. The MPN films are shown to demonstrate improved antioxidant properties compared with the corresponding phenolic compounds in their free form, therefore exhibiting potential as free-standing antioxidant films.

17.
Langmuir ; 35(10): 3643-3650, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30773014

RESUMO

Deposition of dopamine and tannic acid has received great attention in the fields of surface and interface science and technology. The deposition behaviors of various metal-phenolic systems have been investigated, and it is generally accepted that at least one catechol group is essential to the formation of the coatings. Herein, we report a novel and effective surface-coating system based on the coordination complexes of FeIII ions with a natural product juglone that contains only one phenolic hydroxyl. We investigated the deposition behaviors of this novel system on various substrates. Microporous polypropylene membrane modified with juglone/FeIII coatings is superhydrophilic and underwater superoleophobic, showing high separation efficiency and good reusability for various oil/water emulsions. In addition, the modified membrane can adsorb anionic dyes and selectively remove them from dye mixtures with high efficiency. We further demonstrated that the coating is a result of the synergetic effect of juglone/FeIII coordination and FeIII hydrolysis. This work not only provides new insights into surface deposition systems but also expands the polyphenol family for surface coatings of multifunctional materials.

18.
Adv Mater ; 31(12): e1806774, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30702780

RESUMO

Targeted drug delivery remains at the forefront of biomedical research but remains a challenge to date. Herein, the first superassembly of nanosized metal-organic polyhedra (MOP) and their biomimetic coatings of lipid bilayers are described to synergistically combine the advantages of micelles and supramolecular coordination cages for targeted drug delivery. The superassembly technique affords unique hydrophobic features that endow individual MOP to act as nanobuilding blocks and enable their superassembly into larger and well-defined nanocarriers with homogeneous sizes over a broad range of diameters. Various cargos are controllably loaded into the MOP with high payloads, and the nanocages are then superassembled to form multidrug delivery systems. Additionally, functional nanoparticles are introduced into the superassemblies via a one-pot process for versatile bioapplications. The MOP superassemblies are surface-engineered with epidermal growth factor receptors and can be targeted to cancer cells. In vivo studies indicated the assemblies to have a substantial circulation half-life of 5.6 h and to undergo renal clearance-characteristics needed for nanomedicines.


Assuntos
Portadores de Fármacos/química , Substâncias Macromoleculares/química , Metais/química , Nanopartículas/química , Compostos Organometálicos/química , Células A549 , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Modelos Animais , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Appl Mater Interfaces ; 10(39): 33721-33729, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30239183

RESUMO

Hybrid conformal coatings, such as metal-phenolic networks (MPNs) that are constructed from the coordination-driven assembly of natural phenolic ligands, are of interest in areas including biomedicine, separations, and energy. To date, most MPN coatings have been prepared by immersing substrates in solutions containing the phenolic ligands and metal ions, which is a suitable method for coating small or flexible objects. In contrast, more industrially relevant methods for coating and patterning large substrates, such as spray assembly, have been explored to a lesser extent toward the fabrication of MPNs, particularly regarding the effect of process variables on MPN growth. Herein, a spray assembly method was used to fabricate MPN coatings with various phenolic building blocks and metal ions and their formation and patterning were explored for different applications. Different process parameters including solvent, pH, and metal-ligand pair allowed for control over the film properties such as thickness and roughness. On the basis of these investigations, a potential route for the formation of spray-assembled MPN films was proposed. Conditions favoring the formation of bis complexes could produce thicker coatings than those favoring the formation of mono or tris complexes. Finally, the spray-assembled MPNs were used to generate superhydrophilic membranes for oil-water separation and colorless films for UV shielding. The present study provides insights into the chemistry of MPN assembly and holds promise for advancing the fabrication of multifunctional hybrid materials.

20.
ChemSusChem ; 10(13): 2788-2795, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28463439

RESUMO

It is highly desirable to develop environmentally friendly processes for fabricating thin-film composite (TFC) nanofiltration membranes (NFMs) from natural materials. However, the nanofiltration performance of such TFC NFMs is not satisfactory for practical applications owing to the lack of efficient methods for constructing ultrathin, uniform, stable coatings as selective layers. In this study, a contra-diffusion strategy is used to fabricate TFC NFMs with ultrathin cross-linked alginate coatings as selective layers without the use of any organic solvents. The as-prepared NFMs show a water permeation flux that is nearly one order of magnitude higher than that of other alginate-based TFC NFMs with similar salt rejection, and represents the best performance among all TFC NFMs from natural materials. These NFMs also demonstrate excellent mono-/divalent ion selectivity, as well as good long-term operation stability and antifouling properties. Furthermore, this strategy maximizes the reactant usage rate, minimizes the waste discharge and provides new insight into environmentally friendly fabrication of TFC NFMs.


Assuntos
Alginatos/química , Filtração/métodos , Membranas Artificiais , Nanotecnologia/métodos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...